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Abstract-Stefan problems imposed with cyclic temperature and flux boundary conditions are solved by 
using source and sink methods. A source front is associated with a moving freeze front while a sink front 
is associated with a moving melt front. The solution is expressed in a set of coupled integrodifferential 
equations, which are solved numerically for interface positions, temperature profiles, and cumulative and 
instantaneous heat storage and release. The solution methods have been shown to be unique, convergent, 
stable, and accurate. While they are used to test one cycle each of the temperature and flux conditions, the 
developed methods are general and applicable to multiple cycles. The numerical results reveal interesting 
phenomena not previously reported in the literature. Their relevance to energy storage and material 

processing and treatment is also covered. 

INTRODUCTION 

CYCLIC heat injection to and rejection from a phase- 
change material involves a multiphase, simultaneous 
melting and solidification process, which finds appli- 
cations in energy storage, chemical reaction, and 

material and food processing and treatment, among 
others. Analysis of the heat transfer in this process 

calls for the study of a moving boundary problem or 
a Stefan problem, which is difficult to solve because 

the boundary of the problem domain is imposed with 
a time-variant cyclic condition. During the heating 
phase of the cycle, the medium melts and the melting 
front moves from the surface to the interior of the 
body. Next, during the cooling phase of the cycle, the 
melted region near the surface re-freezes and a freezing 
front also appears. There are two phase-change fronts 
in the medium and whether the second freeze front 
is able to catch up the first melt front and how the 
heat is stored and released in different phases of the 
medium depends greatly on the Stefan number and 
on the conditions that are imposed on the surface. It 
is impossible to solve this problem exactly [l-9] ; only 

approximate solutions are possible and the problem 
poses a real challenge to accurate analysis. 

Of the approximate solutions developed for the 
analysis of the Stefan problem, power series and poly- 
nomials of complimentary error functions have been 
used to represent the temperature and interface pos- 
ition for boundaries imposed with Neumann and 
Robin conditions [lO_141. They are known as the 
power series methods and are accurate at small time ; 
at large time, more terms are necessary for the expan- 
sions, and the methods lose their appeal. Stefan prob- 
lems can also be solved by using asymptotic expan- 

sions, which use quasi-steady and quasi-stationary 
solutions for limits. Primarily a perturbation tech- 
nique, the method provides a means for analysis of 
the singularity associated with phase degeneration if 
singular perturbation is employed. However, con- 
siderable effort is necessary in determining higher 

order terms, a drawback greatly limiting its usefulness 
[ 15-221. 

For materials with equal solid and liquid properties, 

a heat source can be used to characterize a freezing 
front in the analysis of a solidification process [23]. 
Generalization to unequal material properties has 
been attempted by Kolodner [24] and Tao [25]. The 
solution of the moving boundary characteristic of the 
Stefan problem can also be simplified by embedding 
the problem domain in a large space with fixed bound- 
aries [24,26]. These methods lead to the solution of 
integrodifferential equations. An alternative approach 
akin to the embedding method is the use of coordinate 
transformation, which, by scaling space and time, per- 
mits simplification of the solution by working in a 
fixed domain [27-341. The transformation also enables 
the improvement of the accuracy of solution [9,35]. 
Another popular approach is the use of the integral 
method, which unlike the enthalpy method that works 
well for phase change over an extended zone, is easy 

to apply yet yields results that are reasonably accurate 
over a wide range of time [3,3639]. Recently, Stefan 
problems have been solved as a system of integral 
equations [40,41]. Fourier series have been used for 
spatial temperature expansions, thus leading to the 
solution of a set of ordinary differential equations in 
time [42]. Stefan problems have also been solved as 
an inverse problem [43]. In purely numerical efforts, 
the modern trend is to use boundary element methods 
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NOMENCLATURE 

specific heat 
infinitesimal quantity 

imposed temperature condition 
imposed flux condition, or Green’s 
function 

circumflexed Heaviside function 
index 

thermal conductivity 
latent heat 
parameter for mode of heat input 
upper limit for time index 
total heat flux 
instantaneous heat flux 

interface position 
interface speed 

temperature 
time 
position, 

Greek symbols 
cr thermai diffusivity 
d Dirac delta function 

i’ dummy variable for position 

P density 
5 dummy variable for time. 

Subscripts 
a, b, c regions 
m phase change 

N,, Nz upper limits for time index in the 
first and second stages 

n time index 
t transition time 
0 temperature equation (24) 
1. 2 melt and freeze fronts, or first and second 

stages. 

in place of finite difference and finite element methods First stage problem 
in the solution of Stefan problems [44-49]. Region b 

A close examination of the solution methods docu- 
mented in the literature reveals that there is a lack of 
accurate methods for the solution of Stefan problems 

imposed with cyclic temperature and flux conditions. 
It is expected that, for the methods to be useful for 
the present problem, the solution must be accurate 
not only at small time but large time as well. The 

methods must be general so that multiphase can be 
analyzed without reformulations of the problem. 

Furthermore, the solution techniques must be simple 
and permit the development of algorithms adaptable 
to both temperature and flux conditions. It is with 
these goals in mind this paper is offered. 

Governing equation 

Boundary condition 

T,(O, t) = F(t) or 
_,aJ(OJ) 

~ = G(t) (2a,b) 
2.X 

Region a 

R,(l) < .Y < cc1 

T,(.\-, t) = T;, = 0. ~ > o (3) 
/ 

ANALYSIS 

The system for investigation is shown in Fig. I, 

where a one-dimensional semi-infinite medium with 
equal solid and liquid properties is considered. The 

material is initially at its phase-change temperature- 
there is no subcooling or superheating in the medium. 
Once heat is supplied to or removed from the surface, 
a phase-change front emerges as shown by the dashed 
lines marked as R,(t). This front moves from left to 
right and divides the domain into two regions; the 
one ahead of the front is called a, that behind it is 
called b. Then using the heat cycle illustrated in Fig. 
2. the first stage temperature, covering the period from 
time zero to the time when the surface re-freezes due 
to heat removal during the second half of the cycle, 
can be obtained by solving the following problem. 

Interface conditions 

Th(R, (t), t) = 0 = T,, (4) 

_,3TdR,W. d ~. __= 
l?S 

(5) 

R, (0) = 0. (6) 

Here all no~dtions have their usual meaning. Notice 
that (2a,b) represent time-variant temperature and 
flux conditions. Equation (5) is valid for the heat cycle 
shown in Fig. 2. The sign on the left hand side of 
(5) would be changed if the heat-out phase (HOP) 
precedes the heat-in phase (HIP). 

Once the surface is cooled below freezing point, the 
second stage starts. A freezing front emerges, which. 
together with the melting front earlier, divides the 
medium into three regions (see lower half of Fig. 2). 
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Melting 

Heat 

MGic 

R,(t) 

Solidification 

I 
Region b , Region a 

R,(t) 

FIG. 1. Coordinates used for phase change analysis. 

Temperatures in these regions can be solved by using 
the following equations. 

Second stage problem 

Region c 

Governing equation 

1 L?T, a’T, 

ax2 c( at ’ Tc(x, t)> 
0 < x < R*(t) 
t > t (7) 

t 

Boundary condition 

T,(O, t) = F(t) or -k 
dTC(O, t) 
~ = G(t) (8a,b) ax 

Region b 

Governing equation 

a2T, 1 aT, ~-_~ 
8x2 - u at ’ Tb(x, 0, 

R,(t) <x < R,(t) 
t > t (9) 

t 

Initial condition 

T,,(x, t) = T,,(x, tJ for t = t, (10) 

Region a 

R,(t)<x< a 
T,(x, t) = T, = 0, t > t (11) 

F L 

Interface conditions 

T,(R,(t), t) = 0 = T,,, (12) 

_,aT,(R,(t), t) 
p-+k 

aTAR,( t) 

aX O’X 
= pL% (13) 

R,(t,) = 0 (14) 

T,(R,(t), t) = 0 = T, (15) 

_,WW> 0 dR, 
ax =pLdt. (16) 

Again signs on the left hand sides of (13) and (16) 
would be changed if HOP precedes HIP. 

A source and sink method is developed for the 
solution of the present problem. This method is an 
extension of the Lightfoot method, which was origin- 
ally developed for the solution of a solidification 
problem of equal solid and liquid properties and 
imposed with a constant temperature condition [23]. 
For the problem at hand, a heat sink is postulated to 
associate with a melting front while a heat source 
is associated with a freezing front. Then, as in the 
Lightfoot method, the original problem in multiple 
regions can be consolidated into a single problem in 
a big domain, which is divided into separate regions 
by the moving source and sink fronts. One tem- 
perature will then be derived, and whether it is in the 
solid or liquid region depends on the position that is 

R,(t) 
I 

Region 1 Region L 

,.p/2 P 
0 

. 
t x 

I I 
R,(t) R,(t) 

FIG. 2. Regions of domain formed by imposition of cyclic temperature conditions. 
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assigned in the temperature equation. The original 
problems in two stages are also incorporated into one 
so that a single equivalent problem is formulated. A 
general temperature can be derived as follows. 

Generul equident prohlern 

Governing equation 

r:‘T pLdR, 

i.r’ - I, 
~~ h , [x - R , ( t)] 

dt 

Boundary condition 

T(0, t) = F(t) or -,EF!$) = G(t) (]ga,b) 

Interface conditions 

T(R,(t), t) = 0 = r,,, 

T(R,(t). t) = 0 = T,,, 

Initial conditions 

(19) 

(20) 

Likewise, setting [ to t, in (23) yields 

T, (.v, t,) = T&Y. t,) 

T(s, 0) = T,, = 0 (21) 

T(u, t) = T, (x, t,) for I = t, m 

It is noted that. when using the general problem 

which is to be used tor the initial condition for the 
second stage temperature derived later. 

above to solve the first stage problem, SZ in (17) and 
equations (20) and (22) must be deleted. On the other 
hand, when using it to solve the second stage problem, 
(21) must be deleted. In addition, the signs preceding 
(5, and 6, must be interchanged if HOP precedes 
HIP. With these minor changes, the general problem 
can be shown to be reducible to (lt(16). For example, 
setting .Y # R,(t) and Rx(t) reduces (17) to ( I), (7) and 
(9). Also, integrating (17) from Rz(t)-r to R?(f)+e 
and forcing the e to be zero in a limiting process 
reduces (17) to (I 3). Other equivalences follow 

immediately. 

It is clear that, for a cyclic temperature imposed on 
the surface, t, = P/2, where P stands for the period of 
the cycle. For this temperature condition, although 
T,(O, t,) is zero, T,(.u, t,) is not for x > 0. On the other 
hand, for a cyclic heat tlux imposed on the surface, t, 
must be determined by solving the following equation 
implicitly : 

T,,, = 0 = ToUl r,) 

dR,(z) 
~d7~~~G(0,t,IR,(z),z)d7. (28b) 

The first stage temperature can be obtained by solv- 
ing the revised versions of (17)-( 19) and (2 1). Green’s 
function method can be used and the temperature 

derived as 

For the flux condition imposed on the surface, energy 
can be stored in the form of sensible heat. The time t, 
is thus greater than P/2, as will be shown later. 

The second stage temperature can be derived by 
solving (17).-(20) and (22). Again the Green’s function 
method is used and the solution derived as 

7’, (_v. t) = T,,(.u, t) Tz(.u, I) = T,,(u, t-t,) 

L ’ 

i 

dR,(T) _ ~r;-~G(x, tlR, (T), z) d7 (23) 
C *=_(I 

where 

T,,(s. t) = J(!.i ” ’ 
7l 

~_!!GexP[ _ 41(:-I)]d7 
r-0 (t-7) - 

(24) 

E(7) = 

F(t) 

imposed at x = 0 (25) 

Here the plus and minus signs in the Green’s func- 
tion in (26) are to be used when flux and temper- 

ature conditions. respectively, are imposed on the 
boundary. 

Equation (23) can be used to derive the inter- 
face position R,(t) by setting .Y = R,(t) and 
T,(R,(t), t) = 0 as 

T,,(R,(t).t) 

C(R,(t).tlR,(7),7)dt. (27) 

G(.u, t,lR, (z), 7) d7 (28a) 

i 

i 
+ T, (s’, r,)G(u. I - t,I.x’, 0) d.u’ 

\ =o 

L ’ ‘! 
+ 

1 I 

dR,(r+t,) _ 
27 

G(.\-,t-t,IR,(T+t,),z) 
“ r- 0 

dR,(z+ t,) 

+ ~~ dz 
G(x.t-t,IRz(7+t,),7) dz. (29) 

1 

Here the first term on the right hand side can be 
obtained by referring to (24). in which t is changed to 
t-t, and F(z) and G(7) are changed to F(7 + tJ and 
G(t+ t,), respectively ; the other 7 in (24) remain 
unchanged. 
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Equation (29) as derived cannot be used for general 
solution; the double integral implicitly contained in 

the second term on the right hand side must be inte- 

grated and, following a lengthy procedure, two ident- 
ities are derived as follows : 

s 

1 
7-,(.x’, t,)G(x, I - t,lx’, 0) dx’ 

Y’= 0 

= (30) 

dR,(z+t,) 
- ---G(x, t-t,IR,(z+t,),t) dz 

d7 1 
x s s ‘I dR,(t) _ 

y’=” :=” 

d5 Gtx’, t,lR I (5),5) 

x G(x, tlx’, t,) dt dx’ 

(31) 

where Green’s function has been given by the general 
expression in (26). 

Using (30) and (31) in (29) and changing time 
frames yields 

Tz(x, t) = T”(X, t) 

+::[=,,(+y) G(x, flRA~h t) dz. (32) 

This equation can be used to determine the second- 
stage temperature in a phase-change material whose 
boundary is imposed with a cyclic temperature or flux 
condition as shown in Fig. 2. 

Equation (32) can also be extended for any cyclic 
temperature as follows [49] : 

X s i=(i+ I)P,? 
(-l)‘“+‘~‘d~G(x,rlR,(i),i)di 

(33) 

where the parameter m is used to control the mode of 
heat input 

1 
2 for 

HIP at t = O+ 
m= 

HOPatt=O+ (34) 

and Idenotes the number of phase-change fronts. A is 
used to represent the circumflexed Heaviside function 

defined as 

+ ?+?Y) 

= I 
1 (i- 1)P f > ~_ ~~~ 

for 
2 

i= 1,2,... (35) 
0 t<- (i- 1)P 

2 

With the use of the Heaviside function, equation (33) 
holds for all time. Also notice that, because of the 
format in which (33) is written, multiple phase prob- 

lems can be analyzed with this equation. As for cyclic 
flux conditions, (i-2)P/2 in (33) and (35) will be 
changed to t, as explained in (28b) and in more detail 

later. 
A short note is in order to discuss the temperature 

obtained. Since no assumptions have been made in 

the course of derivation, equation (33) is exact but 
expressed in an integrodifferential form. It is un- 
expected that the Green function method, which is 

strictly valid for the solution of linear problems, has 
been used here to solve a nonlinear problem. This is 
possible because the nonlinearity in the Stefan prob- 
lem is confined in the interface conditions. For the 

present source-and-sink method of solution, the inter- 
face positions can be determined by setting the left 
hand side of (33) to zero and solving it for R,(t) as in 

(27). Thus the interface positions are solved by using 
a separate equation, which is characteristically non- 
linear, a result enabling the use of a linear method to 
solve nonlinear problems [9]. 

The format of equation (33) is also worthy of note. 
It is valid for any cyclic temperature or flux condition 
imposed on the boundary. Notice that changing the 

boundary condition only changes the sign in the 
Green function. The only major change due to the 
boundary condition is the first term on the right hand 

side of (33), which, as shown in (24), can be integrated 
in closed form once the cyclic condition is specified 
[49-511. Clearly dRi(z)/dz is unknown in (33), yet if 
moved out of the integral under which it is located- 
local linearization-the Green function can be inte- 
grated if the R, is related to dR,(z)/dt in an iteration 

process. These features permit the planning of a solu- 
tion strategy adaptable to different boundary con- 
ditions [52]; they also provide the basis for the 
development of numerical solution as described in the 
next section. 

NUMERICAL SOLUTION 

It is well known that the Stefan problem in an 
extended domain cannot be solved exactly other than 
with a constant temperature condition imposed on 
the boundary. For the problem at hand, the surface 
is exposed to a cyclic condition ; the interface positions 
must be solved numerically. 
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The numerical solution is effected by using local 
linearization ; the dR,(z)/dz in (33) is moved out of the 
integral. Thus for 0 < t < t, with HIP preceding HOP, 

i and m in (33) are set to unity. The intcrfacc positions 
in the first stage are determined by setting s to R,(t) 
and T(R,(t). t) to 0 in (33) as 

; (db:,,, 1 i’ 
C(R,(t,,.,).t,,lR,(?),z)dz 

,/ _ I r--i,, 

= ; To(R,(t,,). h,) (36) 

wheref,,=O;R,(O)=O:N,=1,2 ,..., N,;t,,<t,. 
Moving the dRi(z)/dz out of the integral is inspired by 
the fact that, within small time intervals, the position 

curve can be approximated as linear. For the Stefan 

problem, the curvature of the interface position 
usually lies in a small time range, as shown in Fig. 
3. Then. only over this range, the removal of the 
differential will cause a slight error in the solution of 
the interface position, yet such error can still be 
reduced by taking small time increments. Better still, 

the left hand side of (36) consists of a summation. 
Since the curvature of R, is confined in a small time 
range, the accurate terms in the summation easily 

outnumber the inaccurate terms to the effect that the 
solution is always accurate over a wide range of time. 
An example will bc given later to verify this point. 

For the solution of the interface positions at the 
second stage when t, < t < P, iand m in (33) are taken 
to be 2 and I, respectively. Further. setting .Y = R,(t) 
and T(R,(t), t) = 0 in (33) yields 

= ; T,,(R,(r,J t/\,). (37) 

FIG. 3. Linearization bf the interface position curve for 
numerical solution. 

In a similar fashion, setting .Y = R?(t) and 
T(R,(t), t) = 0 yields 

where to = 0; R>(t,,) = 0; Nz = N, + I, N, +2.. . 
Nl; t, < t,\. < P. Equations (37) and (38) will be 
solved simultaneously for dR,/dt and dRz/dt. In 
this effort, the position R and its gradient dRjdt 

are related as shown in Fig. 3. The position R should 
thus be discounted as an unknown. Equations (36)-- 
(38) contain convolution integrals ; the interface 

positions must therefore be determined at the N values 
sequentially chosen. 

Once the interface positions are found, they can be 
used in (33) to find T(.v, t). Finally, the cumulative 
heat input at the surface can be determined by using 

s 

&Cl,) 
q(t)dt= p(-I)“‘~ ’ [L+cT(x, t,,)] d.r (39) 

0 

for 0 < t,) ,< t,. and 

y(t) dt = p( - I)“’ I, d.r 

s K I ’ ‘8,) 
_ [L + cT(x, t,,)] d.u (40) 

0 

for t, < t,, < P. They are derived strictly on the basis 
of energy considerations. Their formats permit the 
separation of the latent heat from the sensible heat. 
an important part of study for the Stefan problem. 
The solution is now complete. 

UNIQUENESS, CONVERGENCE, ACCURACY 

AND STABILITY 

The interface position is unique, which can be 
proved by using equation (36). Notice that a graphical 
determination of the interface position would require 
plotting both sides of this equation along the _r axis 
with R on the x axis in the same coordinate: the 
interface position can then be found by locating the 
point of intersection of the curves. It can be shown 
that these curves are continuous and monotonic. 
There is only one point of intersection, a necessary 
condition for a unique solution [49]. 

The numerical solution presented in this paper con- 
verges, and is accurate and stable as tested by using 
two examples. The first example deals with a onc- 
phase melting of aluminum whose boundary is 
imposed with a time-variant exponential condition 
given by the relation 
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One-phaas melting of aluminum imposed with cot&ant 

tempemtum condition : F(t)-1 OOO-932=68K. where 932 

ia the melting point of aluminum. 

P ] I I I I I I I I I i 

0 2 4 6 a 1~ n 14 15 zI 20 

TIME , t (s) 

FIG. 4. Accuracy, convergence, and stability tests of the Stefan problem imposed with the constant 
temperature condition. 

F(f) = k[ex@) -I] (41) 

where s can be shown to represent the speed of the 
interface motion. This problem is often considered as 
physically insignificant in the literature yet can be 
solved exactly. Equation (41) is equivalent to 
imposing a time-variant flux condition 

Thus the same example provides testing not only of 
the accuracy of the results but the derivation in the 
solution as well. For the present paper, a bisection 
method is used to find the interface position using 
(36) in which the convergence criterion is taken to be 
3 x lo-‘h, and the results (not shown) indicate that 
the errors are less than 0.05%, which is found at small 
time and with a time increment Af as large as 0.25 s. 
This good result can be ascribed to the fact that, for 
the exponential conditions given in (41) and (42) the 
interface position varies linearly with time. No error 
is thus introduced by moving dR,(t;)/dt out of the 
integral in (36). 

The second example deals with a one-phase melting 
of aluminum imposed with a constant temperature 
condition. Commonly known as the Stefan-Neumann 
problem, it is amenable to an exact solution in which 
the interface position has a distinct curvature at small 
time. This problem provides a test of accuracy due to 
this curvature. As shown in Fig. 4, the interface 
position converges with the use of small time 
increments. Even with an increment as large as 0.1 s, 
the error diminishes below 0.1% at large time. More 
important, the error does not grow as in other time 
marching schemes but is suppressed with the advance 

of time, a unique feature discussed in the previous 
section and in great detail in refs. [49,52]. This com- 
pletes the tests of convergence, accuracy, and stability 
of the solution. 

ILLUSTRATIVE EXAMPLES 

Two examples are used to show the temperature 
distribution, heat exchange, and interface positions in 
a phase-change material imposed with cyclic tem- 
perature and flux conditions given as 

F(t) = 932 + 200 sin 
( > 

+ (K) (43) 

G(t) = 3 x lo6 sin 
( > 

Gt (Wm-*) (44) 

where the period is 20 s. Aluminum is again used for 
tests, which has a modified Stefan number (cT,/L) of 
2.27 [52]. Only one cycle is tested for both examples, 
and the time increment used is taken to be 0.05 s. As 
before, a bisection method with the same convergence 
criterion is employed to find the interface position. 
Based on the tests with the Stefan-Neumann problem 
in the previous section and the curvature of the inter- 
face positions in the present investigation, the error 
in the positions is estimated to be less than 0.1% . 
Notice that, for the flux condition given by (44), the 
overall heat input over the cycle must be zero, a 
requirement that can be tested for the overall accuracy 
in the computation as shown in the next section. 

RESULTS AND DISCUSSION 

CycIic temperature condition 
The interface positions for the cyclic temperature 

condition are plotted in Fig. 5. Here two curves are 
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0 2 k 6 8 r) 1L l4 16 ZI 20 

TIME , t (s) 

FIG. 5. Interface position curves for a Stefan problem imposed with the cyclic temperature condition 

shown ; R, represents the melting front, while Rz rep- 

resents the freezing front. A close examination ofthese 
curves shows that the melting front continues to 
advance even though the surface starts to re-freeze. 
This can be ascribed to the fact that, in (16) R, is 
stationary only when the slope of the temperature 
curve at the melt front is zero. This slope, however, is 
not zero, as will be shown later. Another point of 
interest is that if the R, curve is moved horizontally 

to the left so that it matches the R, curve at the origin, 
then the R, curve would lie right underneath the R, 
curve, signifying that the freeze front lags slightly 
behind the melt front. Again this can be explained by 
referring to the temperature profiles as will now be 

discussed. 
The temperature profiles in the aluminum are 

shown in Figs. 6 and 7. Figure 6 covers times from 1 

to 5 s and 11 to 15 s. These times cover the rapid 
temperature rise and drop parts of the HIP and HOP. 
Putting them in one figure permits comparison of the 
temperature profiles during the corresponding heating 
and cooling parts of the cycle. This leaves the rest of 
the temperature curves to be placed in Fig. 7; here 
again they cover the corresponding cooling and heat- 

ing parts of the cycle. It is noted that, in these figures, 
the interface positions can be identified by locating 
the point of intersection of the curves with the x axis 
at zero temperature. Then, according to Fig. 6, the 
freeze-front positions always lie slightly to the left 
of the melt-front positions, indicating that the freeze 
front lags behind the melt front. This freeze delay may 
be attributed to the temperature profile in the melt 
region at 10 s (see Fig. 7). Here, because of the sensible 
heat stored in the melt region, a portion of the heat 
removed from the surface after this time is used to 
remove this sensible heat; whereas at time greater 
than zero, heat is added to a medium that is initially 

at zero temperature. More heat thus goes to melting, 

resulting in a faster melting front. There is a slope of 
the temperature curve at the melting front at 10 s ; this 
slope contributes to the continuous motion of the 
front, as mentioned earlier. Of particular interest is 

the appearance of the small section of the temperature 
curve lying above the x axis at 11 s (Fig. 6). This 
provides further evidence of the importance of the 
sensible heat and the delay of the freeze front. The 
freeze front will eventually merge with the melt front, 
but this will occur shortly after the start of the second 
cycle, which is not analyzed in this paper. 

One application of the phase-change material is to 
use it for energy storage. It is thus important to exam- 
ine how the heat is stored in different phases of the 
medium. Use is made of the cumulative and instan- 
taneous heat histories shown in Figs. 8 and 9, respec- 
tively. Figure 8 is plotted using equations (39) and 
(40) whereas Fig. 9 is plotted by computing the 
difference of the Q at t, and t,_ , and dividing it by 
(t,Z- t,_ ,) ; the result is then taken to be the instan- 

taneous heat at t,- ,,2. Referring to these figures pro- 

vides insight into how the heat is stored in the medium. 
Clearly the shape of the latent heat curve is the 

result of the motion of the phase-change fronts. Dur- 
ing HIP, the melt front slows down with the advance 
of time, resulting in a drop of the latent heat that is 
instantaneously stored (Fig. 9) and the decline of the 
slope of the cumulative latent heat curve with time 
(Fig. 8). Moving into HOP, the latent heat is released ; 
here because of the sensible heat stored in the melt 
region at 10 s, the instantaneous heat released at 10.5 s 

is smaller than that stored at 0.5 s. Otherwise, the 
latent heat release curve follows the heat store curve 
in Fig. 8 but in an inverted fashion. Notice that there 
is a small amount of latent heat cumulatively stored 
at the end of the cycle, and this is due to the gap 
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FIG. 6. 
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FIG. 7. Temperature profiles for 610 and 16-20 s for a Stefan problem imposed with the cyclic temperature 
condition. 

between the melt front and the freeze front. As men- 
tioned earlier, this gap will eventually be closed 
moving into the second cycle, then the latent heat will 
be zero. 

The sensible heat stored lags behind the surface 
temperature imposed (Fig. 8). For example, the sur- 
face temperature peaks at 5 s, while the sensible heat 
cumulatively stored peaks at about 6.5 s. This can be 
ascribed to the fact that during the initial period of 
heat input, a large amount of heat is used for phase 
change, leaving little for sensible gain (see the data 
near 1 s in Figs. 8 and 9). Notice that the cumulative 

sensible heat is zero at about 11 s, and the sensible 
heat curve is cyclic in Fig. 8. The sensible heat is thus 
negative at 20 s, when it has an absolute value greater 
than the latent heat stored. There is a net loss of the 
total heat at the end of the cycle, an outcome which 
is unexpected. On the other hand, there is great com- 
plication of the instantaneous heat curves at 10 s in 
Fig. 9, and this must be the result of the simultaneous 
appearance of the melt and freeze fronts at that time. 
The fact that the latent heat curve is much higher than 
the sensible heat curve bears a clear testimony of 
the effectiveness of the latent heat storage. The gap 



C-Y. CHOI and C. K. HSIEH 
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FIG. 8. Cumulative heat histories for a Stefan problem imposed with the cyclic temperature condition. 
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FIG. 9. Instantaneous heat histories for a Stefan problem imposed with the cyclic temperature condition. 

between the melt front and the freeze front also con- 
tributes to a number of problems associated with 
material processing and treatment of importance to 
material scientists. 

Cyclicjux condition 
A cyclic heat flux input to the medium yields results 

that are markedly different from those under a cyclic 
temperature condition. As shown in Fig. 10, the freeze 
front does not appear until after 11 s, whereas the half 

period of the flux cycle is 10 s, a delay of about 1 s. 
Again there is a continuous motion of the melt front 
after the emergence of the freeze front ; however, the 
freeze front does not travel as far, resulting in a large 
gap between the melt front and the freeze front at the 
end of the cycle. Moving the R, curve to the left so 
that it matches the R, curve at the origin places the 
Rz curve to the left of the R, curve ; there is a large 
gap between them, indicating that the freeze front 
actually moves faster than the melt front. 
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FIG. 10. Interface position curves for a Stefan problem imposed with the cyclic heat flux condition. 
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FIG. 11. Temperature profiles for l-5 and I I-15 s for a Stefan problem imposed with the cyclic heat flux 
condition. 

Two composite temperature plots are again given for 
the flux condition. The temperature profiles at 1-5 s 
in Fig. 11 are totally expected. However, for the flux 
condition, the medium is still in the liquid phase even 
at 11 s ; the temperature curve is above the x axis at 
zero temperature. There is still an appreciable amount 
of sensible heat stored at that time. The temperature 
profile at 12 s resembles that for the temperature cycle 
at 11 s in Fig. G---the temperature profile is divided 
into two parts, one above the x axis, one below the x 
axis. Comparing the positions of the intersection of 
the curves with the x axis in Fig. 11 again reveals the 
delay of the freeze front, which, however, moves faster 

than the melt front as mentioned earlier. The com- 
posite temperature plot given in Fig. 12 indicates that 
the liquid temperature continues to rise from 6 to 7 s 
even though the surface flux drops during that time. 
This phase shift can be better viewed by referring to 
the surface temperature plot given in Fig. 13. 

The cumulative and instantaneous heat stored in 
the medium are shown in Figs. 14 and 15. Here, the 
majority of the heat input right after the imposition 
of the flux condition again goes to the latent heat, 
which continues to grow (see Fig. 14) even after 10 s. 
The cumulative sensible heat stored remains cyclic 
and is out of phase with the input flux cycle given in 
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FIG. 12. Temperature profiles for 6-10 and 1620 s for a Stefan problem imposed with the cyclic heat flux 
condition. 
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FIG. 13. Surface temperature for a Stefan problem imposed with the cyclic heat flux condition. 

Fig. 15 (see the total heat curve there). Of particular 

interest is the cumulative heat at the end of the cycle 
(see Fig. 14). Here because of the cyclic flux condition, 
this total heat must be zero at the end of the cycle. 
Numerical results show that the cumulative heat 
stored as latent heat at the end of the cycle is within 
99.99% of that withdrawn as sensible heat, giving an 
indication of the high accuracy of the overall com- 
putation in this work. 

EXTENSIONS 

In the solution developed in this paper, the solid 
and liquid properties have been treated as being equal. 
Different property values can be accounted for by 

using double sources and sinks as shown in ref. [24] 

and discussed in great detail in ref. [25]. It is expected 
that, with density differences accounted for in a cyclic 
temperature or flux condition, complicated suction or 
blowing will occur at the interfaces, thus adding great 
complexity to the analysis. 

It should be stressed that, while only one cycle 
each of the temperature and flux condition has been 
analyzed in this work, the method developed is general 
and applicable to multiple cycles. In such problems, 
(33) will be used directly if the medium is imposed 
with a temperature condition. In tracking the interface 
positions, the left hand side of this equation is set to 
zero ; then, if only one interface appears in the 
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FIG. 14. Cumulative heat histories for a Stefan problem imposed with the cyclic heat flux condition. 
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FIG. 15. Instantaneous heat histories for a Stefan problem imposed with the cyclic heat flux condition. 

medium, I is set to unity and x is set to R,(t). The prior to the computation of the interface positions. 

resulting numerical equation is (36). If two interfaces These transition times can be determined by changing 
appear in the medium, I is set to 2 and x is set to R,(t) x and t in (33) to zero and t,, respectively. 
and R*(f) as shown in the numerical equations (37) Subsequently, the left hand side of this equation is set 
and (38). This process continues for any number of to zero to account for the phase change temperature. 
interfaces in the medium. On the other hand, for a A special case is provided in (28b), which is solved 
cyclic flux condition imposed on the boundary, the implicitly for t,. Other transition times can be evalu- 
surface will generally not re-freeze (or re-melt) half- ated accordingly. Algorithms can thus be developed 
way through the cycle. Then t, must be determined for handling these multiple cycle situations. 
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CONCLUDING REMARKS 

The present source-and-sink method orginates 19. 
from the Green function method. However, it is funda- 

mentally different from the way the Green function 
was used in the development of the boundary element 20 

method [53-551. As compared in ref. [49], the present 
method is far more accurate than the boundary 

element method. The present method has thus been 21. 

applied to the solution of phase change in paraffin 
wax with subcooling and superheating. For such a 
problem, there are four stages of temperature in the 

22. 

medium, and the cyclic temperature condition gener- 
ates melt and freeze fronts that re-combine towards 23. 

the end of one cycle. An interesting phenomenon 
related to the hysteresis of energy storage and release 

24. 

is also found as reported in refs. [49,56]. 
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SOLUTIONS DES PROBLEMES DE STEFAN AVEC CONDITIONS AUX LIMITES DE 
TEMPERATURE ET DE FLUX CYCLIQUES 

R&urn&-Des problemes de Stefan avec des conditions aux limites de temperature et de flux cycliques sont 
resolus en utilisant des methodes de source et de puit. Un front-source est associe a un front mobile de 
solidification tandis qu’un front-puit est associt a un front mobile de fusion. Le probltme est exprime par 
un systeme d’equations intigro-differentielles qui est resolu numeriquement pour les positions de l’interface, 
les profils de temperature, le stockage (ou la liberation) de chaleur cumulatif et instantan& Les methodes 
de resolution sont montrees dtre uniques, convergentes, stables et pr&cises. Bien qu’elles sont utilisees 
comme test sur un cycle de temperature ou de flux, elles sont generales et applicables a des cycles multiples. 
Les resultats numeriques rivelent des phtnomenes interessants non decrits anterieurement. Leur application 

au stockage de l’ttnergie est consider&e. 

L~SUNG VON STEFAN-PROBLEMEN BEI RANDBEDINGUNGEN MIT ZYKLISCH 
SCHWANKENDEN TEMPERATUR- UND W~RM~STROMDICHTEN 

Zusammenfassung-Stefan-Probleme mit zykhsch schwankenden Temperaturen und Warmestromdichten 
als Randbedingung werden unter Verwendung der Quellen/Senken-Methode gel&t. Eine Quellenfront ist 
mit einer beweglichen Gefrierfront, eine Senkenfront mit einer beweglichen Schmelzfront verbunden. Die 
Losung wird durch einen Satz gekoppelter Integro-Differentialgleichungen beschrieben, welche numerisch 
gel&t werden. Dabei ergibt sich der Grenzflachenverlauf, Temperaturprofile sowie Summen- und Momen- 
tanwerte fur die gespeicherte und abgegebene Wlrme. Obwohl die entwickelten Verfahren mit nur jeweils 
einer Randbedingung fiir Temperatur und Warmestromdichte fiberpriift worden sind, sind sie doch allge- 
meingiiltig und auf mehrfache Zyklen anwendbar. Die numerischen Ergebnisse zeigen interessante Phln- 
omene, welche bisher in der Literatur noch nicht beschrieben worden sind. AuBerdem wird ihre Bedeutung 

fiir die Energiespeicherung sowie die Materialentwicklung und-behandlung diskutiert. 

PE~EH~E 3AnA4M CTE@AHA C ~~K~H~E~~~M~ rPAH~~HbI~H Y~~OB~~M~ 
AJ’DI TEMHEPA~PbI Ii TEI-IJIOBOI-0 HOTOKA 

hHoTamm-3anaw4 Cre@aua C HKBnKHecKKMK rpaHKHHbrMK ycnoBKKww ~nr reMnepaTypbr K Tenno- 
BOrO nOTOKa peLHamTCK MeTOHaMK KCTOHHKKB K CTOKI. @pOHT KCTO’HtKKa CB113aH C KBKxymKMCX 
I#I~OHTOM saMepsaHnn, B TO B~~MB KBK t$porrT cToXa cBH3aK c ~BK~~~KMcH @~~HTOM nnBBneH*B. 
PemeHKe BbrpaXCeHO CKCTeMOri CBB3aHHMX KHTe~OaK+&W.rKanbHbrX ypaBHeHK& KOTOpbre pemamTCa 
HKcneHHo nnn onpeitenerian nonoxerxnn rpanKubr pasnena, npoi#nineti TeMnepaTypbr K cyMMapKor0 u 
MrHOBeHKOrO 3Ha’teHHii KOJlHYemBa aKKyMyJIKpOBaHHOr0 K BbH@neHHOr0 TerLIHt. DOKa3aH0, YTO 
MeTOLIbi pemeHKa IIBJHHOTCB ytiKKanbHbIMK, CXOKIHHiMKCB, yCTOibtKBbrMH K TOHKMMK. H~CMOT~B Ha TO, 
‘iT0 npeiTJ,O3KeHHbre MeTOAbl UCnOJlb3ymTCB &W, KCnMTaHKB OnHOrO HKKna KaKQOrO K3 yCnOBKii TeM”e- 
paTypbt K nOTOKa, ORB IIBJHtIOTCB 06mKM~ K MOryT npKMeHnTbC% K MHOrOKpaTHMM HKKllaM. rIKCneH- 
HMe pe3yJtbTaTM OTpaKOimT KHTept?CHbIe IIBSIeHKII, paHee He OTMeYaBmKeCR B nKTepaType. PaCCMOTpeHO 

TaKKZe UX OTHOmemie K npO6neMe KaKOnJIeHKB 3HeprKU A 06pa60TKK MaTepKaToB. 


